Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Extremophiles ; 26(1): 11, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122547

RESUMO

Transfer RNAs (tRNAs) are the most ancient RNA molecules in the cell, modification pattern of which is linked to phylogeny. The aim of this study was to determine the tRNA modification profiles of obligate (Anoxybacillus, Geobacillus, Paragebacillus) and moderate (Bacillus, Brevibacillus, Ureibacillus, Paenibacillus) thermophilic aerobic bacilli strains to find out its linkage to phylogenetic variations between species. LC-MS was applied for the quantification of modified nucleosides using both natural and isotopically labeled standards. The presence of m2A and m7G modifications at high levels was determined in all species. Relatively high level of i6A and m5C modification was observed for Paenibacillus and Ureibacillus, respectively. The lowest level of Cm modification was found in Bacillus. The modification ms2i6A and m1G were absent in Brevibacillus and Ureibacillus, respectively, while modifications Am and m22G were observed only for Ureibacillus. While both obligate and moderate thermophilic species contain Gm, m1G and ms2i6A modifications, large quantities of them (especially Gm and ms2i6A modification) were detected in obligate thermophilic ones (Geobacillus, Paragebacillus and Anoxybacillus). The collective set of modified tRNA bases is genus-specific and linked to the phylogeny of bacilli. In addition, the dataset could be applied to distinguish obligate thermophilic bacilli from moderate ones.


Assuntos
Anoxybacillus , Bacillus , Geobacillus , Anoxybacillus/genética , Bacillus/genética , Filogenia , RNA de Transferência/genética
2.
Sci Total Environ ; 532: 605-16, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26115339

RESUMO

The issue of pharmaceuticals in the environment has caused increasing concern in the recent years and various strategies have been proposed to tackle this problem. This work describes a Bayesian network (BN)-based socio-ecological impact assessment of a set of measures aimed at reducing the entry of pharmaceuticals in the aquatic environment. The measures investigated were selected across three sectors: public health market, environmental politics and drug design innovation. The BN model was developed for two drugs, Metformin and Metoprolol, and it models the distribution of the Predicted Environmental Concentration (PEC) values as a function of different measures. Results show that the sensitivity of the PEC for the two drugs to the measures investigated reflects the distinct drug characteristics, suggesting that in order to ensure the successful reduction of a broad range of substances, a spectrum of measures targeting the entire lifecycle of a pharmaceutical should be implemented. Furthermore, evaluation of two scenarios reflecting different emission management strategies highlights that the integrated implementation of a comprehensive set of measures across the three sectors results in a more extensive reduction of the contamination. Finally, the BN provides an initial forecasting tool to model the PEC of a drug as a function of a combination of measures in a context-specific manner and possible adaptations of the model are proposed.


Assuntos
Teorema de Bayes , Monitoramento Ambiental , Metformina/análise , Metoprolol/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/prevenção & controle , Modelos Químicos , Medição de Risco , Poluição Química da Água/estatística & dados numéricos
3.
Nat Chem Biol ; 10(7): 574-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24838012

RESUMO

Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Pentoxil (Uracila)/análogos & derivados , Proteínas Proto-Oncogênicas/metabolismo , Timina/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Isótopos de Carbono , Montagem e Desmontagem da Cromatina , Cromatografia Líquida , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/citologia , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Oxirredução , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas por Ionização por Electrospray , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Org Lett ; 15(2): 366-9, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23286330

RESUMO

The synthesis of the triphosphates of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine and the incorporation of these building blocks into long DNA fragments using the polymerase chain reaction (PCR) are reported. In this way DNA fragments containing multiple hmC, fC, and caC nucleobases are readily accessible.


Assuntos
DNA/química , Oligonucleotídeos/síntese química , Estrutura Molecular , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , Polifosfatos/química
5.
Angew Chem Int Ed Engl ; 51(44): 11162-5, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23037940

RESUMO

Useful diversity: Quantification of modified tRNA nucleobases in different murine and porcine tissues reveals a tissue-specific overall modification content. The modification content correlates with rates of protein synthesis in vitro, suggesting a direct link between tRNA modification levels and tissue-specific translational efficiency.


Assuntos
Deutério/química , Nucleosídeos/análise , RNA de Transferência/análise , Animais , Isótopos de Carbono , Cromatografia Líquida , Marcação por Isótopo , Espectrometria de Massas , Camundongos , Isótopos de Nitrogênio , Nucleosídeos/metabolismo , RNA de Transferência/metabolismo , Ribonuclease Pancreático/metabolismo , Suínos
6.
Angew Chem Int Ed Engl ; 51(29): 7110-31, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22744788

RESUMO

DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.


Assuntos
DNA/química , Nucleosídeos/química , RNA/química , Animais , DNA/genética , DNA/metabolismo , Epigênese Genética , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleosídeos/genética , Nucleosídeos/metabolismo , RNA/genética , RNA/metabolismo
7.
J Am Chem Soc ; 133(5): 1282-5, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21204519

RESUMO

Dihydrogen (H(2)) production by [FeFe]-hydrogenases is strongly inhibited by formaldehyde (methanal) in a reaction that is rapid, reversible, and specific to this type of hydrogenase. This discovery, using three [FeFe]-hydrogenases that are homologous about the active site but otherwise structurally distinct, was made by protein film electrochemistry, which measures the activity (as electrical current) of enzymes immobilized on an electrode; importantly, the inhibitor can be removed after addition. Formaldehyde causes rapid loss of proton reduction activity which is restored when the solution is exchanged. Inhibition is confirmed by conventional solution assays. The effect depends strongly on the direction of catalysis: inhibition of H(2) oxidation is much weaker than for H(2) production, and formaldehyde also protects against CO and O(2) inactivation. By contrast, inhibition of [NiFe]-hydrogenases is weak. The results strongly suggest that formaldehyde binds at, or close to, the active site of [FeFe]-hydrogenases at a site unique to this class of enzyme--highly conserved lysine and cysteine residues, the bridgehead atom of the dithiolate ligand, or the reduced Fe(d) that is the focal center of catalysis.


Assuntos
Inibidores Enzimáticos/farmacologia , Formaldeído/farmacologia , Hidrogênio/metabolismo , Hidrogenase/antagonistas & inibidores , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/antagonistas & inibidores , Proteínas Ferro-Enxofre/metabolismo , Chlamydomonas reinhardtii/enzimologia , Clostridium acetobutylicum/enzimologia , Desulfovibrio desulfuricans/enzimologia , Cinética , Oxirredução/efeitos dos fármacos , Prótons , Especificidade por Substrato
8.
J Am Chem Soc ; 131(41): 14979-89, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19824734

RESUMO

A major obstacle for future biohydrogen production is the oxygen sensitivity of [FeFe]-hydrogenases, the highly active catalysts produced by bacteria and green algae. The reactions of three representative [FeFe]-hydrogenases with O(2) have been studied by protein film electrochemistry under conditions of both H(2) oxidation and H(2) production, using CO as a complementary probe. The hydrogenases are DdHydAB and CaHydA from the bacteria Desulfovibrio desulfuricans and Clostridium acetobutylicum , and CrHydA1 from the green alga Chlamydomonas reinhardtii . Rates of inactivation depend on the redox state of the active site 'H-cluster' and on transport through the protein to reach the pocket in which the H-cluster is housed. In all cases CO reacts much faster than O(2). In the model proposed, CaHydA shows the most sluggish gas transport and hence little dependence of inactivation rate on H-cluster state, whereas DdHydAB shows a large dependence on H-cluster state and the least effective barrier to gas transport. All three enzymes show a similar rate of reactivation from CO inhibition, which increases upon illumination: the rate-determining step is thus assigned to cleavage of the labile Fe-CO bond, a reaction likely to be intrinsic to the atomic and electronic state of the H-cluster and less sensitive to the surrounding protein.


Assuntos
Monóxido de Carbono/metabolismo , Domínio Catalítico , Elétrons , Gases/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Oxigênio/metabolismo , Bactérias/enzimologia , Eletroquímica , Ativação Enzimática , Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Oxirredução
9.
Proc Natl Acad Sci U S A ; 106(41): 17331-6, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805068

RESUMO

Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2Fe(H)) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2Fe(H) domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain-a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Hidrogenase/metabolismo , Oxigênio/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Clostridium/metabolismo , Eletroquímica/métodos , Hidrogenase/antagonistas & inibidores , Hidrogenase/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Cinética , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...